
Git and GitHub
Part 1: Early workflows

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit  
http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

GitHub Personal access token

• We're going verify you've got a PAT set up.

• https://happygitwithr.com/https-pat.html

• Key commands

• usethis::gh_token_help()

• usethis::git_sitrep()

• usethis::create_github_token()

• gitcreds::gitcreds_set()

https://happygitwithr.com/https-pat.html

git operations via ssh

example git clone git@github.com:OWNER/REPO.git

creds local private ssh key + public key on GitHub

git operations via https

example git clone https://github.com/OWNER/REPO.git

creds username + password (password can be GITHUB_PAT)

GitHub API requests via REST

example curl -H "Authorization: token $GITHUB_PAT" https://api.github.com/user/repos

creds GITHUB_PAT

git
server

web
service

https://api.github.com/user/repos

Deep

Thoughts

use version control

we teach Git & GitHub

a repository or repo is a collection of files,
representing a project,

which might also be a an RStudio Project

"commit"

a file or project state that is meaningful to you
for inspection, comparison, or restoration

∆

"diff" What changed here?

Why?

collaboration

Excuse me, do you have a moment to talk about version control?

https://doi.org/10.1080/00031305.2017.1399928 in The American Statistician

https://doi.org/10.7287/peerj.preprints.3159v2 in PeerJ Preprints

https://doi.org/10.1080/00031305.2017.1399928
https://doi.org/10.7287/peerj.preprints.3159v2

Excellent presentation by Alice Bartlett,
originally delivered in 2016 at UX Brighton.

https://speakerdeck.com/alicebartlett/git-for-humans

https://speakerdeck.com/alicebartlett/git-for-humans

happygitwithr.com

https://happygitwithr.com/index.html

Why use version control?

• experiment without fear

• explore cause and effect

• embrace incrementalism

• expose your work

• collaborate

how Git feels

get off the beach!

"If it hurts, do it more often."

https://martinfowler.com/bliki/FrequencyReducesDifficulty.html

https://martinfowler.com/bliki/FrequencyReducesDifficulty.html

accumulate reps

agony : flow

agony : flow

Use a graphical Git client, if you want

• No one is giving out merit
badges to people who only use
command line Git.

• I use RStudio and GitKraken.

• http://happygitwithr.com/git-client.html

Hard-Core

Git Nerd

🙄

http://happygitwithr.com/git-client.html

Workflows for project initiation

• Clone: Make a local project from a remote one.

• Fork: Make a remote copy of another repo.

• Fork and clone: Make a remote copy of another
repo. Then make a local project from that.

• Make a remote repo from a local project.

In Happy Git:

New project, GitHub first

Existing project, GitHub first

In Happy Git:

Fork and clone

In Happy Git:

Get upstream changes for a fork

In Happy Git:

Existing project, GitHub last

GitHub Personal access token

• We're going verify you've got a PAT set up.

• https://happygitwithr.com/https-pat.html

• Key commands

• usethis::gh_token_help()

• usethis::git_sitrep()

• usethis::create_github_token()

• gitcreds::gitcreds_set()

https://happygitwithr.com/https-pat.html

git operations via ssh

example git clone git@github.com:OWNER/REPO.git

creds local private ssh key + public key on GitHub

git operations via https

example git clone https://github.com/OWNER/REPO.git

creds username + password (password can be GITHUB_PAT)

GitHub API requests via REST

example curl -H "Authorization: token $GITHUB_PAT" https://api.github.com/user/repos

creds GITHUB_PAT

git
server

web
service

https://api.github.com/user/repos

"New project, GitHub first"

• We'll walk through this together.

• http://happygitwithr.com/new-github-first.html

• Ideas re: name and location

• repo / Project / folder name = "packages-report"

• locate as sibling to any folders/Projects created
earlier

http://happygitwithr.com/new-github-first.html

Building on "New project, GitHub first"

• Create a new .R file in the local repo.

• Use a little bit of code developed earlier today.

• Notice what's changed in the Git pane, inspect
the diff, stage the file, commit, push.

• Verify the new .R file is now on GitHub.

• Wait ... is a .R file really all I want to share?

what you need to write what people like to read

foo.R

foo.Rmd

foo.md

foo.html

Compile Report

≈ rmarkdown::render("whatever.R")

Sure, HTML is fine ... for now.

What changed in Git pane?

Inspect the diff. Or not.

Stage.

Commit.

Push.

Verify the .html file is now on GitHub.

Wait ... is .html immediately useful on GitHub?

🤔

😭

NO, raw .html is NOT immediately useful* on GitHub.

But Markdown = .md is useful.

Let's render .R to .md instead of .html!

* it obviously is useful in actual web publishing workflows

#' ---

#' output: html_document

#' ---

#' ---

#' output:

#' html_document:

#' keep_md: yes

#' ---

#' ---

#' output: md_document

#' ---

#' ---

#' output: github_document

#' ---

foo.R foo.html

foo.R foo.md foo.html

foo.R foo.md

foo.R foo.md

Add this YAML frontmatter to your .R file.

Re-Compile Notebook

What changed? Look at the Git diff.

This is what I mean by "explore cause and effect" and
"experiment without fear".

#' ---

#' output: github_document

#' ---

Get comfortable with the diff.

Stage.

Commit.

Push.

Verify the .md file is now on GitHub.

Revel in how nice the .md looks!

This is what I mean by "expose your work".

Take away #1

• It is absolutely OK to track rendered or derived
products in Git and push them to GitHub. Often
it's a good idea!

• Just because someone can fork, clone, install all
necessary packages, then run your code, it doesn't
mean they want to or will.

• Be humane. Be realistic.

Take away #2

• For consumption on GitHub, Markdown (.md) is
vastly more useful than .html, .docx, .pdf, etc.

• Binary formats like .docx and .pdf are also a
reliable source of merge conflicts. Think carefully
before you track them with Git.

How to think about files + Git

• Not all file types play equally well with Git. Plain text
works best.

• "Excuse Me, ..." article has a section on "Which files to
commit"

• Not all file types play equally well with GitHub.
Markdown is especially awesome.

• https://happygitwithr.com/workflows-browsability.html

Keep doing "New/Existing project, GitHub first"

• Continue to port your earlier work on library
exploration into your new Git/GitHub repo. Or bring
an example solution over.

• Make lots of small additions and changes.

• Play with rendering to markdown.

• Look at diffs, stage, commit, push, verify.

• This is what I mean by "embrace incrementalism".

Why use version control?

• experiment without fear

• explore cause and effect

• embrace incrementalism

• expose your work

• collaborate

let's practice dealing with
unpleasant situations

Dealing with push rejection

• A push attempt will fail if your local commit
history is incompatible with that on the remote.

~/rrr/rstats-wtf/wtf-repos/wtf-ascii-funtimes % git push origin

To https://github.com/jennybc/wtf-ascii-funtimes.git

 ! [rejected] main -> main (non-fast-forward)

error: failed to push some refs to 'https://github.com/jennybc/wtf-ascii-funtimes.git'

hint: Updates were rejected because the tip of your current branch is behind

hint: its remote counterpart. Integrate the remote changes (e.g.

hint: 'git pull ...') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

main

origin/main

~/rrr/rstats-wtf/wtf-repos/wtf-ascii-funtimes % git push origin

To https://github.com/jennybc/wtf-ascii-funtimes.git

 ! [rejected] main -> main (non-fast-forward)

error: failed to push some refs to 'https://github.com/jennybc/wtf-ascii-funtimes.git'

hint: Updates were rejected because the tip of your current branch is behind

hint: its remote counterpart. Integrate the remote changes (e.g.

hint: 'git pull ...') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

git push is rejected.

You must git pull first.

At this point, we (or at least I) will create the
troublesome situation.

How?

Make a commit on GitHub, via the browser.

(Don't pull.)

Make a local commit.

Try to push. Fail. Now what?

main

origin/main

My preferred resolution.

I love a linear history.

Not always possible, but often is.

Depends on the situation, i.e. what's in the diffs.

Achieved by a "pull with rebase".

main

origin/main

One-off invocation:

git pull --rebase

I recommend "pull with rebase" as a lifestyle.

IMO it should be the default.

Opt-in like so:

 git config --global pull.rebase true

main

origin/main

An acceptable outcome. (But I don't care for it.)

Resolution via a merge commit.

(Sort of) the default behaviour, but recent versions of Git will complain and
encourage you to be more explicit.

Also, awkwardness about generating the commit message.

main

origin/main

If you're in the middle of this and you want to back out:

 git merge --abort

If you want to complete the merge:

 git commit -m 'Merge commit'

main

origin/main

main

origin/main

No matter what, don't forget to git push!

You want to get back to a happy place where local and
remote are synced up.

Read more in Happy Git:

Dealing with push rejection

Pull, but you have local work

https://happygitwithr.com/push-rejected.html
https://happygitwithr.com/pull-tricky.html

Dealing with a merge conflict

• A pull attempt will fail if Git can't figure out how
to do the rebase or merge.

From github.com:jennybc/bunny-scarf

 958548f..3357952 master -> origin/master

Auto-merging README.md

CONFLICT (content): Merge conflict in README.md

Automatic merge failed; fix conflicts and then commit the result.

If you simply cannot deal with the mess right
now, back out and come back later.

If it's a "pull with rebase":

 git rebase --abort

If it's a "fetch and merge":

 git merge --abort

We (or at least I) am going to soldier on and
resolve the conflict.

<<<<<<< HEAD

Wingardium Leviosaaaaaaaa

=======

Wing-GAR-dium Levi-O-sa

>>>>>>> 3357952

Every locus of conflict looks like this.

How things look locally (or on the
currently checked out branch).

How things look remotely (or on
the branch you're merging).

*conflict markers appear in orange

Wingardium Levi-O-sa

At each locus of conflict, you must form a consensus
state and remove the conflict marker lines.

*conflict markers appear in orange

<<<<<<< HEAD

Wingardium Leviosaaaaaaaa

=======

Wing-GAR-dium Levi-O-sa

>>>>>>> 3357952

Stage and commit all affected files.

Commit.

Push.

Carry on.

Powerful Git clients, like GitKraken, offer
support for resolving merge conflicts.

The Nuclear Option

• What if you've made a huge mess and you just
can't fix it?

• Official answer: git reset.

• Unofficial answer: burn it all down 🔥

- Alberto Brandolini

Me

The amount of Git skilz necessary to fix a
borked up repo is an order of magnitude
bigger than to bork it.

burn it all down

🔥 requires you have a remote repo in a decent state!

Commit early, commit often! And push!

It's your safety net.

Rename local repo to, e.g. "foo-borked".

Re-clone to a new, clean local repo, "foo".

Copy any files that are better locally from "foo-
borked" to "foo". Commit. Push. Carry on.

