
Daily workflows with
Git + GitHub + RStudio

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

What did we do previously?

Confirmed your setup 🎉

New/Existing repo, GitHub first
 - Made several successful roundtrips
 - Importance of viewing diffs and commits

Special R + GitHub stuff:
 - R → md is easy, high payoff

Got out of some uncomfortable situations

Today we'll preview some intermediate
workflows you'll "enjoy" soon.

Deep

Thoughts

"If it hurts, do it more often."

https://martinfowler.com/bliki/FrequencyReducesDifficulty.html

https://martinfowler.com/bliki/FrequencyReducesDifficulty.html

"If it hurts, do it more often."

Apply this to git commit, pull, merge, push.
(and restarting R, re-running your scripts)

Why?
Take your pain in smaller pieces.
Tight feedback loop can reduce absolute pain.
Practice changes what you find painful.

You do NOT want "Guitar
Hero" Git history.

The longer you wait to
integrate, the harder it
will be.

https://twitter.com/henryhoffman/status/694184106440200192

https://twitter.com/henryhoffman/status/694184106440200192

"Git is great because you have the entire
history of your project."

OK, but how do you actually go back in time?

"I just need to see the past."

"I need to visit the past."

"I want to return to the past."

"I had a great cookie last October."

"I want to change the past."

Browse & search on GitHub.

Create and checkout a branch.

Revert or reset.

Cherry pick or checkout a path.

🐲 there be dragons 🐲

Levels of Git Time Travel

For the purposes of this workshop, we consider this forbidden.

It can be useful -- we use it! -- but requires care.

Not a great idea for early days with Git and GitHub.

git push --force 😱🚫🙅

"I just need to see the past."

"I need to visit the past."

"I want to return to the past."

"I had a great cookie last October."

"I want to change the past."

Browse & search on GitHub.

Create and checkout a branch.

Revert or reset.

Cherry pick or checkout a path.

🐲 there be dragons 🐲

Levels of Git Time Travel

"I just need to see the past."

https://github.com/rstats-wtf/wtf-ascii-funtimes

Go visit this in a web browser.

https://github.com/rstats-wtf/wtf-ascii-funtimes

What's in this repo? What's in the files?

How many commits have been made?

Which commit introduced the bunny?

How many times has the truck been changed?

Which file(s) was/were most recently changed?

"I just need to see the past."

GitHub (or any modern git remote) is the easiest way to
navigate project history.

"Why is this thing the way it is? How did we get here?"

This (+ burn it all down) make a remote repo extremely
valuable, even for private solo work.

"I just need to see the past."

"I need to visit the past."

"I want to return to the past."

"I had a great cookie last October."

"I want to change the past."

Browse & search on GitHub.

Create and checkout a branch.

Revert or reset.

Cherry pick or checkout a path.

🐲 there be dragons 🐲

Levels of Git Time Travel

get your own copy of
wtf-ascii-funtimes!

fork and clone

Why do you have to care about
remotes, eventually?

create_from_github(
 "https://github.com/rstats-wtf/wtf-ascii-funtimes",
 destdir = "???"
)

In Happy Git:
Fork and clone
https://happygitwithr.com/fork-and-clone.html

"I just need to see the past."

"I need to visit the past."

"I want to return to the past."

"I had a great cookie last October."

"I want to change the past."

Browse & search on GitHub.

Create and checkout a branch.

Revert or reset.

Cherry pick or checkout a path.

🐲 there be dragons 🐲

Levels of Git Time Travel

Why must we talk about SHAs (commits) and
branches?

Because that is how we talk, precisely, about
"time", with Git.

It's how we address a specific diff or state.

In Happy Git:
https://happygitwithr.com/git-refs.html

"commit"
a file or project state that is meaningful to you

for inspection, comparison, restoration

ce25578

4792826

9037bdc

7c2a86d

01d20e1

ab06713

1d91495

commit ≈ SHA-1 hash ≈ SHA ≈ 40 chars ≈ 1st 7 chars

ce25578

4792826

9037bdc

7c2a86d

01d20e1

ab06713

1d91495

sometimes, a commit ≈ a diff(erence)

Δ

ce25578

4792826

9037bdc

7c2a86d

01d20e1

sometimes, a commit ≈ a state

ΔΔΔΔ + + +

ce25578

4792826

9037bdc

7c2a86d

01d20e1

ab06713

robot-baby

main

branch ≈
commit ≈

state

HEAD

ce25578

4792826

9037bdc

7c2a86d

01d20e1

ab06713

robot-baby

HE
AD
~

HE
AD
~1

HE
AD
^

HE
AD
^1

HE
AD
^^
^^

HE
AD
^1
^1
^1
^1

HE
AD
~4

"relative" refs

main HEAD

ce25578

4792826

9037bdc

7c2a86d

01d20e1

ab06713

robot-baby

HE
AD
~

HE
AD
~1

HE
AD
^

HE
AD
^1

HE
AD
^^
^^

HE
AD
^1
^1
^1
^1

HE
AD
~4

I avoid this
madness

main HEAD

"I need to visit the past."

Create and checkout a branch at a specific
commit ≈ state.

Then return to present ≈ checkout main.

create & checkout
a branch

git checkout -b branchname <sha1-of-commit or HEAD~3>

at a specific state

git checkout main

return to present

git checkout -b time-travel ???

Reset your local files to this state:
 - Castle exists
 - Bunny exists
 - Truck does NOT yet exist

git checkout main

Reset your local files to the present

* or use RStudio or GitKraken to switch back to main

What about all these old branches lying around?

git branch -d localBranchName
git push origin --delete remoteBranchName
git prune

* I usually do this via GitKraken or GitHub

"I want to return to the past."

Revert = make a new commit that undoes a commit.

Reverses a specific change.

Do this to undo something that has been pushed.

ce25578

4792826

9037bdc

7c2a86d

01d20e1

Δ -Δ

git revert --no-edit 7c2a86d

Revert the commit where the bunny population
went from 1 to 6.

git revert --no-edit ???

 \\
 __()
o(_-_

accept the automatic commit message

* or use GitKraken to revert

Push the bunny birth control work to GitHub.

git push

Check in the browser to confirm you're synced up.

"I want to return to the past."

Reset returns repo to a previous state.

Safe only for work that has not been pushed.

Add a left-facing bunny.
Do a terrible job. Feel deep regret.

 \\ ///
 __() o(_-_
o(_-_ o(_-_

git reset --hard HEAD

Dismiss current uncommitted changes

* or use "Discard All" in RStudio or "Discard file" in GitKraken

Add a left-facing bunny AGAIN.
Do a terrible job AGAIN.
Commit your awful bunny. DO NOT PUSH.

 \\ ///
 __() o(_-_
o(_-_ o(_-_

git reset --mixed HEAD~

Un-commit last commit, but keep the changes

* Or, frankly, I usually do this in GitKraken.

git reset --hard HEAD~

Un-commit last commit and discard the changes

"I had a great cookie last October."

Bring a very specific thing from the past to the present:

• A whole commit = "cherry pick"

• The state of a specific file = "checkout (a specific filepath)"

Re-apply the commit where the bunny
population went from 1 to 6.

git cherry-pick ???

 \\ \\ \\ \\ \\ \\
 __() __() __() __() __() __()
o(_-_ o(_-_ o(_-_ o(_-_ o(_-_ o(_-_

* Or, frankly, I usually do this in GitKraken.

Re-store the short castle tower, by checking
out castle.txt from a suitable state.

git checkout ??? -- castle.txt
 _ |~ _
 [_]--'--[_]
'	""`""	'		
	/^\			
_	_	I	_	_

Commit this change.

"I just need to see the past."

"I need to visit the past."

"I want to return to the past."

"I had a great cookie last October."

"I want to change the past."

Browse & search on GitHub.

Create and checkout a branch.

Revert or reset.

Cherry pick or checkout a path.

🐲 there be dragons 🐲

Levels of Git Time Travel

Push this your work to GitHub.

git push

Check in the browser to confirm you're synced up.

It is very hard to actually destroy data with Git.

You can almost always recover using the ref log.

But ... no one actually enjoys using the ref log.

Before doing something iffy, create a "safety net" branch.

This can make it easier to back out of bad decisions.

Branches as safety nets

If you have high confidence, create the safety net branch.
Then checkout master and have at it.
If things go poorly, reset master to the safety net state.

If you have low confidence, create the safety net branch.
Have at it.
If things go poorly, checkout master and carry on.

Branches as safety nets

https://git-scm.com/book/en/v2/Git-Tools-Reset-Demystified

https://git-scm.com/book/en/v2/Git-Tools-Reset-Demystified

No more time travel to past

Two important techniques for moving
forward:
1. Repeated amend
2. Merge (w/o and w/ conflicts)

It is very hard to actually destroy data with Git.
Any commited state can be recovered.

Rock climbing analogy → commit often!

If you're embarrassed by the clutter and tiny steps, use git
amend to slowly build up a "real" commit before you push it.

work, commit, work, amend, work, amend, work, amend, PUSH
work, commit, work, amend, work, amend, work, amend, PUSH

The Repeated Amend

Make the tower tall again.
Add one layer at a time, using amend.

git commit --amend -m "an updated commit message"

git commit --amend --no-edit

* Or, frankly, I usually do this in RStudio or GitKraken.

Push this your work to GitHub.

git push

Check in the browser to confirm you're synced up.

Recovering from Git(Hub) failure

Scenario: You try to push and cannot

What's the problem?
There are changes on GitHub that you don't have.

Pull. If the gods smile upon you, merge works. Now push.

Let's create this situation.

Make sure local Git pane is clear.
Make sure local and remote are synced (push, pull).

Edit & commit to file A locally.
Edit & commit to file B remotely.

Try to push. You will fail.

Edit castle.txt locally.
Commit.

Edit truck.txt on GitHub.
Commit.

Try to push. git push. NOPE.

>>> git push upstream HEAD:refs/heads/master
To github.com:rstats-wtf/wtf-ascii-funtimes.git
 ! [rejected] HEAD -> master (non-fast-forward)
error: failed to push some refs to 'git@github.com:rstats-wtf/wtf-ascii-funtimes.git'
hint: Updates were rejected because the tip of your current branch is behind
hint: its remote counterpart. Integrate the remote changes (e.g.
hint: 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Do what Git says!

git pull

>>> git pull
From github.com:jennybc/wtf-ascii-funtimes
 9f4f288..42a6c97 master -> origin/master
Merge made by the 'recursive' strategy.
 truck.txt | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

Look at your Git history.

You will see a merge commit, where the local and remote changes
were reconciled.

This is best case scenario and is likely with good Git habits (lots of
small frequent commits and merges, no binary files in repo).

You do NOT want "Guitar
Hero" Git history.

The longer you wait to
integrate, the harder it
will be.

https://twitter.com/henryhoffman/status/694184106440200192

https://twitter.com/henryhoffman/status/694184106440200192

Recovering from Git(Hub) failure
Scenario: You pull and get a merge conflict.

What's the problem?
GitHub can't figure out how to reconcile diffs.

Resolve the conflicts.
Or abort ... and come back later.

Push this your work to GitHub.

git push

Check in the browser to confirm you're synced up.

Let's create this situation.

Make sure local Git pane is clear.
Make sure local and remote are synced (push, pull).

Edit & commit to file A locally.
Make conflicting edit & commit to file A remotely.

Try to push. You will fail. Try to pull. You will fail. All is fail.

Edit bunny.txt locally.
Commit.

Edit bunny.txt on GitHub.
Commit.

Make your edits contradictory.
Try to push. git push. NOPE.

>>> git push origin HEAD:refs/heads/master
To github.com:jennybc/wtf-ascii-funtimes.git
 ! [rejected] HEAD -> master (fetch first)
error: failed to push some refs to 'git@github.com:jennybc/wtf-ascii-funtimes.git'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

>>> git pull
From github.com:jennybc/wtf-ascii-funtimes
 1c4c06c..0d8f1e4 master -> origin/master
Auto-merging bunny.txt
CONFLICT (content): Merge conflict in bunny.txt
Automatic merge failed; fix conflicts and then commit the result.

Do what Git says!

git pull

<<<<<<< HEAD
 \\ \\ \\
 __() __() __()
o(_-_ o(_-_ o(_-_
=======
 \\ \\ \\ \\ \\ \\
 __() __() __() __() __() __()
o(_-_ o(_-_ o(_-_ o(_-_ o(_-_ o(_-_

 \\ \\ \\ \\ \\ \\
 __() __() __() __() __() __()
o(_-_ o(_-_ o(_-_ o(_-_ o(_-_ o(_-_
>>>>>>> 0d8f1e41d32342b2526a21f8a7c607bf32278efe

conflict
markers

If you're just not up for this right now, do
git merge --abort to back out.

You can keep working locally. But you must deal with this
problem before you can resume syncing with GitHub.

When you're ready, git pull again and expect conflicts.

You must form a consensus version and delete the
markers, at each locus.

Stage. Commit. Push. Carry on.

That is how we resolve merge conflicts!

* I resolve merge conflicts in GitKraken.

Bonus exercise:
Make non-overlapping, mergeable edits to the castle.

Flip flag direction
vs
Making door taller

This CAN auto-merge, even though affects the same file.

Deep

Thoughts

Recovering from Git(Hub) failure

Scenario: You have a huge mess you cannot fix.

Official answer: git reset.

Unofficial answer: burn it all down 🔥

So I Jim Hester will still be my friend:

git reset (mixed and hard) is genuinely worth learning.

GitKraken, for example, makes it easy to do hard or mixed
resets to previous states.

After you reset to a non-broken state, have another go at
whatever you were doing.

- Alberto Brandolini

The amount of Git skilz
necessary to fix a borked up
repo is an order of magnitude
bigger than to bork it.

- Me

burn it all down

🔥 requires you have a remote repo in a decent state!
Commit early, commit often! And push! It's your safety net.

Rename local repo to, e.g. "foo-borked".

Re-clone to a new, clean local repo, "foo".

Copy any files that are better locally from "foo-borked" to "foo".
Commit. Push. Carry on.

