
What They Forgot to
Teach You About R

rstudio::conf 2019

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit  
http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

rstd.io/wtf-2019-rsc

https://rstd.io/wtf-2019-rsc
https://reprex.tidyverse.org

 @jennybc

 @JennyBryan
Jenny Bryan  
RStudio (& UBC)

Day 1, afternoon
Let's Git it On.

https://github.com/jennybc
https://twitter.com/JennyBryan

Everyone is encouraged to open issues here:

rstd.io/wtf-2019-rsc
https://github.com/jennybc/wtf-2019-rsc/issues

Record glitches, gotchas,
 good sidebar discussions, etc.
 to address now or later.

https://rstd.io/wtf-2019-rsc
https://github.com/jennybc/wtf-2019-rsc/issues

Deep

Thoughts

use version control

we teach Git + GitHub

"commit"
a file or project state that is meaningful to you

for inspection, comparison, restoration

"diff"
What changed here?

Why?

Δ

collaboration

Excuse me, do you have a moment to talk about version control?
https://doi.org/10.7287/peerj.preprints.3159v2
https://doi.org/10.1080/00031305.2017.1399928

https://doi.org/10.7287/peerj.preprints.3159v2
https://doi.org/10.1080/00031305.2017.1399928

happygitwithr.com

http://happygitwithr.com

Why version control?

• experiment without fear

• explore cause and effect

• embrace incrementalism

• collaborate

• expose your work

how

feels

get off the beach!

agony : flow

agony : flow

agony reduction

No one is giving out Hard-core Git Nerd Badges

I like RStudio + SourceTree
http://happygitwithr.com/git-client.html

Use a Git client, if you like

http://happygitwithr.com/git-client.html

Project initiation: the remote case

Make Your remote copy of Their remote repo = "fork"

Make a local Project from a remote repo, Yours or Theirs = "clone"

Make Your remote repo from a local Project ... a bit fiddly

Project initiation strategies, the remote case

Make Your remote copy of Their remote repo = "fork"

Make a local Project from a remote repo, Yours or Theirs = "clone"

Make Your remote repo from a local Project ... a bit fiddly

"clone"

daily work, your stuff

pull
push

"clone"
*not as useful as you might think

"fork"

"fork and clone"

contribute to other people's stuff

push

pull request

pull

daily work, your stuff

pull
push

"New project, GitHub first"
Why do I emphasize this?

My diagrams omit two big technical points:

• remotes

• branches

I want you to get off the beach before fannying
around with remotes and branches.

"New project, GitHub first" workflow

http://happygitwithr.com/new-github-first.html

I suggest:

• repo / Project / folder name = "packages-report"

• locate as sibling to folders/Projects created earlier

http://happygitwithr.com/new-github-first.html

coordinated work through this:
https://happygitwithr.com/new-github-first.html

https://happygitwithr.com/new-github-first.html

Copy a .R from earlier work today into the
packages-report directory/Project/repo.
Your choice re: which file or Project.

wtf-explore-libraries

packages-report

wtf-packages-report

packages-report

What changed in Git pane?
Inspect the diff.
Stage.
Commit.
Push.
Verify the .R file is now on GitHub.

Wait ... is a .R file all I want to share?

what you
need to write

what people
like to read

foo.R
foo.Rmd

foo.md
foo.html

Compile Report

≈ rmarkdown::render("whatever.R")

Sure, HTML is fine ... for now.

What changed in Git pane?
Inspect the diff. Or not.
Stage.
Commit.
Push.
Verify the .html file is now on GitHub.

Wait ... is .html immediately useful on GitHub?

🤔

😭

NO, raw .html is NOT immediately useful* on GitHub.

But Markdown = .md is useful.

Let's render .R to .md instead of .html!

* it CAN BE useful in actual web publishing workflows

foo.R foo.html

#' ---
#' title: "Untitled"
#' output: html_document
#' ---

foo.R foo.md foo.html

#' ---
#' title: "Untitled"
#' output:
#' html_document:
#' keep_md: yes
#' ---

foo.R foo.md
#' ---
#' output: md_document
#' ---

foo.R foo.md #' ---
#' output: github_document
#' ---

foo.R foo.html

#' ---
#' title: "Untitled"
#' output: html_document
#' ---

foo.R foo.md foo.html

#' ---
#' title: "Untitled"
#' output:
#' html_document:
#' keep_md: yes
#' ---

foo.R foo.md
#' ---
#' output: md_document
#' ---

foo.R foo.md #' ---
#' output: github_document
#' ---

Add this YAML frontmatter

Re-Compile Notebook

What changed?

This is what I mean by "explore cause and effect"
and "experiment without fear".

#' ---
#' output: github_document
#' ---

What changed in Git pane?
Inspect the diff.
Stage.
Commit.
Push.
Verify the .md file is now on GitHub.

Revel in how nice the .md looks!

😍

This is what I mean by "expose your work".

Take away #1:

Consider putting rendered products on GitHub.

Just because someone can fork, clone, install all
necessary packages, then run your code, it doesn't
mean they want to or will.

Be kind. Be realistic.

Take away #2:

For consumption on GitHub, Markdown (.md) is
vastly more useful than .html, .docx, .pdf, etc.

Binary formats like .docx and .pdf are also a
reliable source of merge conflicts. Think carefully
before you track them with Git.

Resources re: which files to commit & how to make your
repo browsable

Excuse Me, ... section re: "Which files to commit"

Make a GitHub repo browsable
https://happygitwithr.com/workflows-browsability.html

https://happygitwithr.com/workflows-browsability.html

Start porting your library exploration work over.

After each meaningful change, re-render.

What changed? Look at the diffs.

Stage. Commit. Push. Check result on GitHub.

This is what I mean by "embrace incrementalism".

independent work on challenge

ideas:

• Bring your whole wtf-packages-report project over
(or the example solution), gradually, making lots of
commits. Play with rendering to .md.

• Tweak the code if you like.

• add devtools::session_info() at the end
or sessionInfo() if no devtools

What now? Depends on what time it is!

Please open issues for questions that you 've raised and we discussed! Useful to me
for planning tomorrow's final Git/GitHub coverage.

What follows are slides I can imagine us referring to today or tomorrow.

What now? Game time decision! Possibilities:

Equivalence between R and Rmd.

Use the secret README in the packages-report project.

GitHub Pages, the Simple Version.

Equivalence between .Rmd and .R

From "Excuse Me, ..." article

.R .Rmd

R code is top-level
Use #' comment for prose
#+ for chunk header

Prose is top-level
Put R code in chunks

knitr::opts_chunk$set(
 collapse = TRUE,
 comment = "#>",
 out.width = "100%"
)

Nice defaults for global chunk options

foo.Rmd foo.html

title: "Untitled"
output: html_document

foo.Rmd foo.md foo.html

title: "Untitled"
output:
 html_document:
 keep_md: yes

foo.Rmd foo.md

output:
 md_document

foo.Rmd foo.md

output:
 github_document

https://github.com/blog/2289-publishing-with-github-pages-now-as-easy-as-1-2-3

In your repo's Settings

Simplest use of GitHub Pages = Project webpage

README.md becomes index.html, by default

Given that foo.md exists, these internal links work (trial & error):
👍 foo, [foo](foo.md), [foo](foo.html)

Record your site URL as your repo's website

Hot tips for simple GitHub Pages

wrap up here

when we return to Git/GitHub, we'll
wrap up loose ends:

 - branches and remotes
 - useful daily workflows

