
What They Forgot to
Teach You About R

rstudio::conf 2019

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit  
http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

rstd.io/wtf-2019-rsc

https://rstd.io/wtf-2019-rsc
https://reprex.tidyverse.org

 @jennybc

 @JennyBryan
Jenny Bryan  
RStudio (& UBC)

Day 2, afternoon
Daily survival with Git + GitHub + RStudio

https://github.com/jennybc
https://twitter.com/JennyBryan

Everyone is encouraged to open issues here:

rstd.io/wtf-2019-rsc
https://github.com/jennybc/wtf-2019-rsc/issues

Record glitches, gotchas,
 good sidebar discussions, etc.
 to address now or later.

https://rstd.io/wtf-2019-rsc
https://github.com/jennybc/wtf-2019-rsc/issues

Closure re: yesterday's activity

See day 1 session 4 landing page for links to fully
realized packages-report repos:
one by Jenny (you saw), one by Jim (includes a
Makefile)

Where did we do yesterday?

Confirmed your setup 🎉

New repo, GitHub first, then RStudio
 - Made several successful roundtrips
 - Importance of viewing diffs and commits

Special R + GitHub stuff:
 - R or Rmd -> md is easy, high payoff
 - GitHub Pages can use any md to make world's easiest website

Today we'll preview some intermediate
workflows you'll enjoy soon.

Deep

Thoughts

"If it hurts, do it more often."

https://martinfowler.com/bliki/FrequencyReducesDifficulty.html

https://martinfowler.com/bliki/FrequencyReducesDifficulty.html

"If it hurts, do it more often."

Apply this to git commit, pull, merge, push.
(and restarting R, re-running your scripts)

Why?
Take your pain in smaller pieces.
Tight feedback loop can reduce absolute pain.
Practice changes what you find painful.

You do NOT want "Guitar
Hero" Git history.

The longer you wait to
integrate, the harder it
will be.

https://twitter.com/henryhoffman/status/694184106440200192

https://twitter.com/henryhoffman/status/694184106440200192

Deep

Thoughts

Recovering from Git(Hub) failure

Scenario: You have a huge mess you cannot fix.

Official answer: git reset.

Unofficial answer: burn it all down 🔥

So I can face Jim Hester when he sees this:

git reset (mixed and hard) is genuinely worth learning.

SourceTree, for example, makes it easy to do hard or
mixed resets to previous states.

After you reset to a non-broken state, have another go at
whatever you were doing.

- Alberto Brandolini

The amount of Git skilz
necessary to fix a borked up
repo is an order of magnitude
bigger than to bork it.

- Me

burn it all down

🔥 requires you have a remote repo in a decent state!
Commit early, commit often! And push! It's your safety net.

Rename local repo to, e.g. "foo-borked".

Re-clone to a new, clean local repo, "foo".

Copy any files that are better locally from "foo-borked" to "foo".
Commit. Push. Carry on.

Why do you have to care about
remotes, eventually?

"clone"

origin

daily work, your stuff

pull
push

origin

"clone"*not as useful as you might think
because you can never send a PR

origin

"clone"*not as useful as you might think
because you can never send a PR

🚫
😭

🚫

origin

"fork"

"fork and clone"

origin

get changes from the main repo

push

pull request
origin????

🚫
😭

🚫

push

pull request

pull

originupstream

get changes from the main repo

Scenarios when you need to add a remote:

Add the main repo as a second remote, typically
nicknamed "upstream" (fork and clone
workflow, 2 months later, you need to re-sync)

Add your fork as a second remote, when you did
"clone" and, in hindsight, you wish you'd done
"fork and clone"

"Burn it all down", the Fork version 🔥

If you contribute to a repo once every 4 years,
you can also just delete your (old) fork and your
(old) local repo and start over (fork, clone, edit,
push, PR).

Obviously does not apply to a repo to which you
regularly contribute.

fork and clone rstd.io/wtf-2019-rsc here
and add upstream remote

Key commands
git remote -v
git remote add upstream https://github.com/OWNER/REPO.git
git pull upstream master --ff-only
git push

http://rstd.io/wtf-2019-rsc
https://github.com/OWNER/REPO.git

Why do you have to care about
branches, eventually?

"Git is great because you have the entire
history of your project."

OK, but how do you actually go back in time?

"I just need to see the past."

"I need to visit the past." 

"I want to return to the past."

"I had a great cookie last October."

"I want to change the past."

Browse & search on GitHub.

Create and checkout a branch.

Revert (or reset).

Cherry pick or checkout a path.

🐲 there be dragons 🐲

Levels of Git Time Travel

For the purposes of this workshop, we consider this forbidden.

It can be useful -- we use it! -- but requires care.

Not a great idea for early days with Git and GitHub.

git push --force

main source:

https://git-scm.com/book/en/v2/Git-Tools-Reset-Demystified

https://git-scm.com/book/en/v2/Git-Tools-Reset-Demystified

"I just need to see the past."
Browse & search on GitHub.

live: browse history on GitHub
for a repo we created yesterday,
search all of GitHub for our own
weird words

"I need to visit the past."
Create and checkout a branch.

live: for a repo we created yesterday,
locally, time travel by "create &
checkout" of a branch

return to present: git checkout master

git branch branchname <sha1-of-commit>
git branch branchname HEAD~3

https://stackoverflow.com/questions/2816715/branch-from-a-previous-commit-using-git

git checkout -b branchname <sha1-of-commit or HEAD~3>

Creates branch "branchname" at a certain state

Creates and checks out branch! W00t.

git checkout master

Go back to master

"I want to return to the past."
Revert = make a new commit that reverses a
commit. Do this to undo something that has
been pushed.

live: for a repo we created yesterday,
make a commit, push, then revert it, then push
look at history on github

git revert --no-edit <sha1-of-commit>

git revert --no-edit HEAD

Or to just make a new commit that
undoes the last commit:

"I want to return to the past."
Reset. Safe only for work that has not been
pushed.

live: for a repo we created yesterday,
make a change, don't commit, and dismiss it
make a commit then undo via reset

git reset HEAD^1

git reset --hard

Dismiss current uncommitted changes

Or, frankly, I always use "Discard All" in RStudio or
"Discard file" in SourceTree

Un-commit last commit, but keep the changes

Or, frankly, I always use SourceTree to do this

"I had a great cookie last October."
Cherry pick a whole commit or
checkout a specific file from a specific commit.

live: for a repo we created yesterday,
make a branch and make a commit on it
go back to master
cherry pick that commit
pick an earlier commit and restore a specific file to that version

checkout a specific file from an earlier version
git checkout <sha1-of-commit> -- R/foo.R

git cherry-pick <sha1-of-commit>

apply a specific commit to current branch

It is very hard to actually destroy data with Git.

You can almost always recover using the ref log. 

But ... no one actually enjoys using the ref log.

Before doing something iffy, create a "safety net" branch.

This can make it easier to back out of bad decisions.

Safety nets

If you have high confidence, create the safety net branch.
Then checkout master and have at it.
If things go poorly, reset master to the safety net state.

If you have low confidence, create the safety net branch.
Have at it. 
If things go poorly, checkout master and carry on.

Safety nets

It is very hard to actually destroy data with Git.
Any commited state can be recovered.

Rock climbing analogy → commit often!

If you're embarrassed by the clutter and tiny steps, use git
amend to slowly build up a "real" commit before you push it.

work, commit, work, amend, work, amend, work, amend, PUSH
work, commit, work, amend, work, amend, work, amend, PUSH

The Repeated Amend

The Repeated Amend

live: for a repo we created yesterday,
locally, build up a commit with a few
amends then push (prove the
intermediate states do not show up)

git commit --amend -m "an updated commit message"

Amend lets you update the message and/or the
changes in the commit

Amend is available in the usual RStudio commit
interface, btw.

"I just need to see the past."

"I need to visit the past." 

"I want to return to the past."

"I had a great cookie last October."

"I want to change the past."

Browse & search on GitHub.

Create and checkout a branch.

Revert (or reset).

Cherry pick or checkout a path.

🐲 there be dragons 🐲

Levels of Git Time Travel

Recovering from Git(Hub) failure

Scenario: You try to push and cannot

What's the problem?
There are changes on GitHub that you don't have.

Pull. If the gods smile upon you, merge works. Now push.

Let's create this situation.

Make sure local Git pane is clear.
Make sure local and remote are synced (push, pull).

Edit & commit to file A locally.
Edit & commit to file B remotely.

Try to push. You will fail.

jenny@2015-mbp bunny-scarf $ git push
To github.com:jennybc/bunny-scarf.git
 ! [rejected] master -> master (fetch first)
error: failed to push some refs to 'git@github.com:jennybc/bunny-scarf.git'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

😢

Remedy? Do what it says!
pull, then push ... pull, then push ... pull, then push

Look at your Git history.

You will see a merge commit, where the local and remote
changes were reconciled.

This is best case scenario and is likely with good Git habits (lots
of small frequent commits and merges, no binary files in repo).

Recovering from Git(Hub) failure
Scenario: You pull and get a merge conflict.

What's the problem?
GitHub can't figure out how to reconcile diffs.

Resolve the conflicts.
Or abort ... and come back later.

Let's create this situation.

Make sure local Git pane is clear.
Make sure local and remote are synced (push, pull).

Edit & commit to file A locally.
Make conflicting edit & commit to file A remotely.

Try to push. You will fail. Try to pull. You will fail. All is fail.

From github.com:jennybc/bunny-scarf
 958548f..3357952 master -> origin/master
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Automatic merge failed; fix conflicts and then commit the result.

<<<<<<< HEAD
Wingardium Leviosaaaaaaaa

=======
Wing-GAR-dium Levi-O-sa
>>>>>>> 33579525d88af071268b0a0c64c54f357712589a

<<<<<<< HEAD
Wingardium Leviosaaaaaaaa

=======
Wing-GAR-dium Levi-O-sa
>>>>>>> 33579525d88af071268b0a0c64c54f357712589a

Git inserts markers at each locus of conflict and shows
you both versions.

You must form a consensus version and delete the
markers, at each locus. Commit. Push. Carry on.

<<<<<<< HEAD
Wingardium Leviosaaaaaaaa

=======
Wing-GAR-dium Levi-O-sa
>>>>>>> 33579525d88af071268b0a0c64c54f357712589a

If you're just not up for this right now, do
git merge --abort to back out.

You can keep working locally. But you must deal with this
problem before you can resume syncing with GitHub.

If time permits

Show "Existing project, GitHub last" workflow.

This is what usethis::use_github()
automates, when it actually works 😬.

New folder + make it an RStudio Project

• usethis::create_project("~/i_am_new")

• RStudio > New Project... > New Directory > New Project

Make a new local RStudio Project called firstlast
Say YES to "Create a git repository"
Or, if you need to make existing Project a git repo after the fact:
 - In R: usethis::use_git()
 - In shell: git init
 - In RStudio: Tools > Version Control > Project Setup, set Version system
to Git

Create a new repo on GitHub called firstlast

NO! No README
this time.
We want this repo
to be empty.

git remote add origin https://github.com/YOU/REPO.git
git push --set-upstream origin master

origin

https://github.com/YOU/REPO.git

